

Measuring TOA Radiative Flux from Space: The Angular Problem

With a Balloon at 35 km...

- you can just measure the outgoing flux directly!
- but until recently, commercial flux radiometers were biased and inaccurate...
- and we didn't have the funding to develop a custom set of radiometers for 35 km altitude work...
- but now, piggybacking on much recent work in ARM, at Langley and Goddard, at NOAA, and elsewhere, commercial flux radiometers are much better understood

2002

Large-Balloon History

- Late 1700s, France: Montgolfier brothers
 - measured temperature profiles
- 1960: First NASA balloon experiment
 - communications satellite, Echo I
- 1985: Balloons in the clouds of Venus
- 1987: Balloon-borne sensors observed Supernova
- almost no Earth Science use (mainly stratos. chemistry)
 - flights too short
 - unsteerable

, 2002

LDB/ULDB Balloon

Payload: up to 4000 kg

Volume: up to 1 million m³

Long Duration Balloon: zero-pressure

- flight duration: 3-5 up to 30 days max
- altitude: 35-40 Km
- yo-yo's up and down due to solar heating, cooling
- at mercy of winds

Ultra Long Duration Balloon: super-pressure

- flight duration: 100-365 days
- altitude: 30-35 Km (no yo-yoing)
- steerable (in future)

, 2002

Diurnal Altitude Change of LDB/ULDB

Even at night, the Earth's atmosphere glows from reflected starlight, moonlight, man-made ultraviolet (UV) light and molecular processes.

NIGHTGLOW!

Nightglow Gondola

Nightglow Payload

ument	Contact Person		Configuration		Location		Physical Dimension (in)	Mass (lbs)	Power/TM Requirement	R	hermal equirement emp range)	Power (Heat, E-deck
ghtglow ime	Louis Barbier (PI) NASA GSFC		Overall Structure and Electronics Deck	1	Gondola Structure	1	80 x 68 x 24 (E-deck)	1600	Power=28 W Channels=	-4	0 C to +50 C	20
DAR	Louis Barbier	d	(1) Mirror/PMT, (2) Laser/electronics		(1) Outer frame (2) Under	(1) (2)	24 x 24 x 60 9 x 8 diam.	180	Power= 8 W	-4	0 C to +50 C	0
te Lit e	Jeff Houser NASA	(1) (2)	Electronics Sensor	(1) (2)	frame E-deck Solar array frame	(1) (2)	14 x 14 x 12 5 x 4 x 4	25	Power= 3.05 Channels= 3	-4	0 C to +50 C	3.05
Cloud mera	GSFC Steve Stochaj New Mexico		Camera/Electronic s		Under frame (in LIDAR laser vessel)		4 x 3 x 5 (in LIDAR laser vessel)	10	Power= 3 W Channels= ??	_4	0 C to +50 C	0
dium EP	Magal särd NASA Wallops	(1) (2)	Electronics 2 Antennae	(1) (2)	E-deck Antenna farm		(1) 20 x 14 x 14	60	Power= 15 W Channels= 0	-4	0 C to +50 C	15
PS REx	FF Steve Katzburg NASA	(1) (2)	En tronics 2 Ap ennae (p/down) Solar panel??	(1) (2) (3)	E-deck Under frame & farm LIDAR frame	(1) (2) (3)	15 x 11 x 7 7 x 7 x 1 25 x 20 x 1	30	Power= 15 W Channels= 0	-4	0 C to +50 C	15
ERES	Wenying Su NASA	(1) (2)	Rece vers	(1) (2)	E-deck Under frame		(1) 5 x 5 x 5	40	Power= 2 W Channels= ??	-4	0 C to +50 C	?
TALS	Langlev		4333				等 評主	1945				50+

, 2002

CERES Validation Package on Nightgrow

- Pyranometers:
 - Eppley PSP (modified with dome thermocouples)
 - Kipp & Zonen CM22
- Pyrgeometers:
 - Eppley PI R
 - Kipp & Zonen CG4
- Data relay system
 - Nightglow's system
 - Our own system using I ridium
- Data storage
 - On board
 - Daily downlink

, 2002

Radiometers for Nightglow

Launch and Package Recovery

Balloon and Satellite Footprint

CERES Overpass Estimation

- Each day <u>four</u> CERES and balloon overlapping opportunities (Terra + Aqua)
- If use CERES programmable azimuth plane scan mode, overlapping can be increased tenfold
- If calibrate balloon radiometers to CERES overpasses, can test 3-hourly guesstimates based on GOES

2002

